Sains Malaysiana 54(8)(2025): 1889-1900

http://doi.org/10.17576/jsm-2025-5408-02

 

Seismotectonic Characteristics of the Cugenang Fault, Cianjur, West Java, Based on a-Value, b-Value, Seismic Moment and Satellite Gravity (Earthquake Data of 2008 - 2023)

(Ciri Seismotektonik Sesar Cugenang, Cianjur, Jawa Barat, Berdasarkan Nilai a, Nilai b, Momen Seismik dan Graviti Satelit (Data Gempa Bumi 2008 - 2023))

 

ATIN PRIHATINI1, RINA DWI INDRIANA2,*, AGUS SETYAWAN2 & MUHAMMAD FAHMI2

 

1Physics Undergraduate, Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Semarang, Indonesia

2Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Semarang, Indonesia

 

Received: 13 February 2025/Accepted: 26 May 2025

 

Abstract

The formation of fault in Cugenang, Cianjur Regency, West Java, caused an earthquake on 21 November 2022, with a magnitude of 5.6 SR, resulting in significant losses and casualties. The orientation of the Cugenang fault is N 347° E, dip 82.8°, depth 10 - 11 km, and a dextral strike-slip mechanism. This research aims to analyze the seismotectonic activity in the Cianjur area using a-value, b-value, seismic moment, and gravity field anomaly data. The processing of the b-value, a-value, and seismic moment was conducted using earthquake data from the Indonesia Meteorology and Geophysics Agency's website, which includes longitude, latitude, magnitude, and earthquake depth (1 January 2008 - 28 February 2023). Gravity field anomalies were processed using GGMplus satellite data. The results indicate that residual gravity anomaly values and seismic moments are inversely proportional to the a-value and b-value. The seismic moment values range from 12.2 to 14.7, the b-value from 0.2 to 1, the a-value from 1.1 to 2.1, and the residual gravity anomaly is -16 mGal to 26 mGal. The earthquake's epicenters were distributed north of the Cimandiri fault in the Rajamandala segment, coinciding with the location of the Cugenang fault. The average earthquake depth ranged from 10 km to 20 km, suggesting that the earthquakes occurred in young volcanic rocks. The presence of active faults and brittle volcanic rocks makes the area around Cianjur prone to earthquakes and increases the potential for additional new faults.

Keywords: Characteristics; Cugenang; fault; new; seismotectonic

 

Abstrak

Pembentukan sesar di Cugenang, Kabupaten Cianjur, Jawa Barat, menyebabkan gempa bumi pada 21 November 2022 dengan kekuatan 5.6 SR yang mengakibatkan kerugian dan kehilangan jiwa yang besar. Orientasi sesar Cugenang ialah N 347° E, kemiringan 82.80°, kedalaman 10 - 11 km dan mekanisme gelinciran dekstral. Penyelidikan ini bertujuan untuk menganalisis aktiviti seismotektonik di kawasan Cianjur menggunakan data nilai a, nilai b, momen seismik dan anomali medan graviti. Pemprosesan nilai b, nilai a dan momen seismik dijalankan menggunakan data gempa bumi daripada laman web Agensi Meteorologi dan Geofizik yang merangkumi longitud, latitud, magnitud dan kedalaman gempa bumi (1 Januari 2008 - 28 Februari 2023). Anomali medan graviti diproses menggunakan data satelit GGMplus. Keputusan penyelidikan menunjukkan bahawa anomali graviti sisa dan nilai momen seismik adalah berkadar songsang dengan nilai a dan b. Nilai momen seismik berkisar antara 12.2 hingga 14.7, nilai b dari 0.2 hingga 1, nilai a dari 1.1 hingga 2.1 dan anomali graviti sisa -16 mGal hingga 26 mGal. Pusat gempa bumi tersebar di utara bahagian Rajamandala Sesar Cimandiri, bertepatan dengan lokasi Sesar Cugenang. Purata kedalaman gempa bumi berkisar antara 10 km hingga 20 km, ini menunjukkan bahawa gempa bumi berlaku di batuan gunung berapi muda. Kehadiran sesar aktif dan batuan gunung berapi yang rapuh menjadikan kawasan sekitar Cianjur terdedah kepada gempa bumi dan meningkatkan potensi penambahan sesar baharu.

Kata kunci: Baharu; ciri; Cugenang; seismotektonik; sesar

 

REFERENCES

Ahumada, M.F., Sanchez, M.A., Vargas, L., Filipovich, R., Martínez, P. & Viramonte, J.G. 2023. Joint interpretation of gravity and airborne magnetic data along the Calama-Olacapato-Toro fault system (Central Puna, NW Argentina): Structural and geothermal significance. Geothermics 107: 102597.

Aki, K. 1966. Earthquakes generating stress in Japan for the years 1961 to 1963 obtained by smoothing the first motion radiation patterns. Bull. Earthq. Res. Inst. 44: 447-471.

Allen, J.R.L. 1986. Earthquake magnitude-frequency, epicentral distance, and soft-sediment deformation in sedimentary basins. Sedimentary Geology 46(1-2): 67-75.

Blakely, R.J. 1996. Potential Theory in Gravity and Magnetic Applications. Cambridge: Cambridge University Press.

Bora, D.K., Borah, K., Mahanta, R. & Borgohain, J.M. 2018. Seismic b-values and its correlation with seismic moment and Bouguer gravity anomaly over Indo-Burma ranges of northeast India: Tectonic implications. Tectonophysics 728: 130-141.

Daryono. 2022. BMKG Report on the Cianjur Earthquake (M5.6, 21 November 2022).

Eleonora, A., Krishna, A.P., Muhammad, A.B., Mariyanto, Mimin, I., Cahyo A.H. & Rina, D.I. 2023. Identification of mud volcano’s structure using gravity satellite and fault fracture density analysis: Case study Ciuyah Mud Volcano, Kuningan, West Java. Sains Malaysiana 52(11): 3013-3026.

Ernandi, F.N. 2020. Analisis variasi a-value dan b-value dengan menggunakan software zmap v. 6 sebagai indikator potensi gempa bumi di wilayah Nusa Tenggara Barat. Inovasi Fisika Indonesia 9(3): 24-30.

Gutenberg, B. & Richter, C.F. 1944. Frequency of earthquakes in California. Bulletin of the Seismological Society of America 34(4): 185-188.

Hilmi, I.L. 2019. Analisis seismisitas berdasarkan data gempa bumi periode 1958-2018 menggunakan b-value pada Daerah Selatan Jawa Barat dan Banten. Bachelor's Thesis, Fakultas Sains dan Teknologi UIN Syarif Hidayatullah Jakarta (Unpublished).

Hirt, C., Kuhn, M., Claessens, S., Pail, R., Seitz, K. & Gruber, T. 2014. Study of the Earth׳ s short-scale gravity field using the ERTM2160 gravity model. Computers & Geosciences 73: 71-80.

Holtkamp, S. & Brudzinski, M.R. 2014. Megathrust earthquake swarms indicate frictional changes which delimit large earthquake ruptures. Earth and Planetary Science Letters 390: 234-243.

Indriana, R.D., Mariyanto, M., Agustin, E., Iryanti, M., Hapsoro, C.A., Koesuma, S. & Ashadi, A.L. 2024. Gravity interpretation of mud volcano based on satellite data (study case Kuwu and Cangkring mud volcano). Indonesian Journal of Applied Physics 14(1): 165-175.

Indriana, R.D., Nurwidyanto, M.I. & Widada, S. 2021. Remodeling Kaligarang fault based on satellite gravity data. Journal of Physics: Conference Series 1943(1): 012004.

Indriana, R.D., Nurwidyanto, M.I. & Laode, M.S. 2020. Data validation of gravity field and satellite data using correlation and coherence method. Journal of Physics and Its Applications 3(1): 113-119.

Kanamori, H. & Brodsky, E.E. 2004. The physics of earthquakes. Reports on Progress in Physics 67(8): 1429.

Khan, P.K. & Chakraborty, P.P. 2007. The seismic b-value and its correlation with Bouguer gravity anomaly over the Shillong Plateau area: Tectonic implications. Journal of Asian Earth Sciences 29(1): 136-147.

Linda, L., Ihsan, N. & Palloan, P. 2019. Analisis distribusi spasial dan temporal seismotektonik berdasarkan nilai b-value dengan menggunakan metode likelihood di Pulau Jawa. Jurnal Sains dan Pendidikan Fisika 8(3): 269-278.

Mogi, K. 1963. Some discussions on aftershocks, foreshocks and earthquake swarms-the fracture of a semi finite body caused by an inner stress origin and its relation to the earthquake phenomena. Bull. Earthq. Res. Inst. 41: 615-658.

Montgomery, D.C., Peck, E.A. & Vining, G.G. 2021. Introduction to Linear Regression Analysis. New Jersey: John Wiley & Sons.

Murjaya, J. 2021. Tatanan tektonik dan implikasi kegempaan di Pulau Jawa Bagian Barat dan sekitarnya. Pusat Penelitian dan Pengembangan BMKG.

Nuannin, P., Kulhanek, O. & Persson, L. 2005. Spatial and temporal b value anomalies preceding the devastating off coast of NW Sumatra earthquake of December 26, 2004. Geophysical Research Letters 32: L11307.

Pepen, S., Tom, W., Nicholas, R., Conor, A.B., Kadek, H.P., Andrean, S., Andri, K., Sri, W., Andri, D.N., Hasbi, A.S., Ardiantoe, Daryono, Suko, P.A., Dwikorita, K., Priyobudi, Gayatri, I.M., Iswandi, I. & Jajat, J.  2023. Fault zone structure and damage related to the 2022 Cianjur Earthquake inferred from aftershock distribution. Earth, Planets and Space 75: 64.

Prananda, Y., Zera, T. & Sunarya, D. 2022. Analisis distribusi spasial dan temporal parameter seismotektonik wilayah Jawa Barat dan Banten berdasarkan a-value dan b-value periode 1971-2021. Buletin Meteorologi, Klimatologi dan Geofisika 2(3): 24-34.

Prezzi, C., Risso, C., Orgeira, M.J., Nullo, F., Sigismondi, M.E. & Margonari, L. 2017. Subsurface architecture of Las Bombas volcano circular structure (Southern Mendoza, Argentina) from geophysical studies. Journal of South American Earth Sciences 77: 247-260.

Ratman, N. & Gafoer, S. 1998. Peta Geologi Lembar Jawa Bagian Barat Edisi Kedua Skala 1:500.000. Bandung: Pusat Peneltian dan Pengembangan Geologi.

Rohadi, S., Grandis, H. & Ratag, M.A. 2017. Studi variasi spatial seismisitas zona subduksi Jawa. Jurnal Meteorologi dan Geofisika 8(1): 42-47.

Sarkarinejad, K., Zadeh, R.M. & Webster, R. 2013. Two-dimensional spatial analysis of the seismic b-value and the Bouguer gravity anomaly in the southeastern part of the Zagros Fold-and-Thrust Belt, Iran: Tectonic implications. Journal of Asian Earth Sciences 62: 308-316.

Scholz, C.H. 1968. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America 58(1): 399-415.

Shohaya, J.N., Chasanah, U., Mutiarani, A., Wahyuni, L. & Madlazim, M. 2013. Survey dan analisis seismisitas Wilayah Jawa Timur berdasarkan data gempa bumi periode 1999-2013 sebagai upaya mitigasi bencana gempa bumi. Jurnal Penelitian Fisika dan Aplikasinya (JPFA) 3(2): 18-27.

Soehaimi, A. 2008. Seismotektonik dan potensi kegempaan wilayah Jawa. Indonesian Journal on Geoscience 3(4): 227-240.

Telford, W.M., Geldart, L.P. & Sheriff, R.E. 1990. Applied Geophysics. Cambridge: Cambridge University Press.

Visser, S.W. 1922. Inland and Submarine Epicentra of Sumatra and Java Earthquakes. Batavia: Javasche Boekhandel en Drukkerij.

Widiyantoro, S., Gunawan, E., Muhari, A., Rawlinson, N., Mori, J., Hanifa, N.R., Susilo, S., Supendi, P., Shiddiqi, H.A., Nugraha, A.D. & Putra, H.E. 2020. Implications for megathrust earthquakes and tsunamis from seismic gaps south of Java Indonesia. Scientific Reports 10: 15274.

Wiemer, S., McNutt, S.R. & Wyss, M. 1998. Temporal and three-dimensional spatial analyses of the frequency–magnitude distribution near Long Valley Caldera, California. Geophysical Journal International 134(2): 409-421.

Zamani, A. & Hashemi, N. 2000. A comparison between seismicity, topographic relief, and gravity anomalies of the Iranian Plateau. Tectonophysics 327(1-2): 25-36.

 

*Corresponding author; email: rinadwiindriana@lecturer.undip.ac.id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next